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Introducing the arbitrary constant Cs, we obtain 

*+g,- 2 WA + fg,)] - b (&I + f&X - 2@%) - x+i 
(2.16) 

m = 10n 

The structure of integraIs (2.15) and (2.16) is the same as that of integral (2.14), with 
the first term corresponding to the linearized integral of mass and the second to the line- 
arized momentum integral [4], 

Equation (1.9) of the divergent form yields for v = 2 and v = 3 the integral which 
defines flows with conservation of the moment of momentum of flow ; such flows cannot 
be defined by expansions (2.3) for the shock wave propagating in a quiescent gas, and 
are not considered here. 

The author thanks 0. S. Ryzhov for advice and interest in this work. 
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Flows of a chemically active gas mixture are considered in a small region ofa 
Lava1 nozzle, where their mode changes from subsonic to supersonic (the frozen 
speed of sound is considered) are analyzed. Continuous solutions and solutions 
with shock waves are derived. Conditions of shock-free flows are obtained. 
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1. Coatinuour flow,, We locate the system of coordinates fs, rf (cylindrical 
or Cartesian) at the nozzle axis of symmetry at the point where the stream velocity is 
equal to the frozen speed of sound, and combine the s-axis with the axis of symmetry. 
Under conditions of quasi-frozen process the system of equations of motion of a gas mix- 
ture is of the form [l] av 

v,+u,-&&(v-I)?, 
“VX au, 
-z-=X- (1.1) 

(for p~ne~~~el tlows y = 1 and for axisymmetric ones v =5 2 ). 
For system (1.1) at the nozzle axis of symmetry we formulate the following Cauchy 

problem : 
%=A,% SC@ U2=.4#,Z>o; v,=o (A,>O) (1.2) 

and seek in the considered flow region either continuous or discontinuous solutions of 
problem (1. I), (1.2). 

Note that d~ontinui~ of the derivative is admissible at point x = 0, r = 0 , The 
magnitude of the latter determines the character of transition from subsonic to superso- 
nic velocities, 

The problem (I.. l),( l.2) is invariant with respect to the continuous group of transfor- 
mation of similitude 

z--tax, T + a%, ux--+=G z+ = a”‘??~ 

Hence its solution can be sought in the self-similar form 

v, = r.9 (0, V, = r3g (E), E = x / ? (1.3) 

The substitution of (1.3) into (1.1) yields equations that are satisfied by functions f and 
g. After the elimination of g in these, we obtain for f the second order equation 

while g is determined by formula 

g Lqfi& 
vs.2 

4I;‘~+fwcJ (1.5) 

Equation ( 1.4) has a simple particular solution 

f = AE + A (A + 1) 1 (24 Cl.61 

where A is an arbitrary constant, Singular points of Eq. (1.4) correspond to singuiar 
characteristics which pass through the coordinate origin in the physical plane (x, r). 

The solution of the problem is derived as follows. We denote by C_” and C+’ the 
extreme left- and right-hand singular characteristics that pass thrargh the coordinate 
origin, respectively. We divide the flow region into three parts, viz, region I lying to 
the left of C_“, region 2 lying to the right of C+O, and region ;J lying between the 
singular characteristics (Fig. 1). Integrals (1.6) with constant A equal A, or As repre- 
sent, respectively, solutions in regions I and 2, with the chanrcteristics Cko of the form 
x / 9 = &* = con&, where E_” (E,“) define the left-bmd (right-hand) intersection 

pofnt of parabola f = 4Ea with the straight line (1.6) with A = Al (A = Aa). The 
integral curves that correspond to actual phyatcal flows can have at the intersection points 
with the parabola only two slopes 
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f*’ = - v% - ‘/a -+ lh% + %)* + Bv%~ (1.7) 

determined by (1.4). 
behavior of these curves is qualitatively represented in Fig. 2. The coordinates of 

points a , b , c and cl are,respectively: (- Vq, v I2) : (- I/,, - 1) ; (- 1 / 

(v + 8), v I (v + 8)) : (- 1 / (v + 8), - 8 I (v + 8)) 3 
Note that curves other than those 

defined by (1.6) can have points of 
inflection only on the parabola f = 
4g. In factJet at some point t the 
quantity f(&)#4~aanddsf/d%=0, 
then Eq.( 1.5) at point El of the con- 
sidered integral curve becomes 

0 s 

Fig. 1 Fig. 2 

(df I dQB + (2vE + 1) df I & - 2vf = 0 CL@ 

Hence by the theorem of existence and uniqueness we conclude that the considered in- 
tegral curve is of the form (1.6). For region 3 the solution can be derived by numerical 
integration of (1.4) with the condition of its continuity a&g the singular characteristics 
C_” and 6’,.a and of finiteness at the derivatives of these. 

The analysis of finite expansions in the neighborhood of singular points f = 4&r’ 
shows that for 0 < A, < v / (Y + 8) region 3 does not contain continuous solutions 
that are different from (1.6) with A determined by (1.7). For Al > v / (v + 8) a 
beam of integral curves emanates from each point of intersection of the parabola with 
the straight line f = A& + Al (A, + 1) f (2~). At that point the slope of integ- 
ral curves Al' determined by (l.7) for E = E” is negative. The unique solution which 
at that point has a positive slope is the straight line (L6) with A = Al. 

Integral curves emanating from the parabola with a negative slope, which pass under 
the straight line (1.6) with A = Al’ intersect the parabola for the second time at a 
negative slope. As previously shown,along such curves cl”f I dg < 0 and df / dS < 
A;, and since the second intersection point of such curve with the pambola lies to the 

left of the second intersection point of the straight line (1.6) with A = A,’ with the 
parabola, we conclude from the examination of Fig. 2 that the considered curve reaches 
the parabola f = 4g at an infinite negative slope. Such solutions correspond to flows 
with infinite accelerations. Since this is physically impossible, either a shock wave must 
be generated in them or their pattern undergoes a complete change. It can be similarly 
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shown that integral curves lying above the straight line (1.6) with A = Al’ reach the 
right-hand branch of the parabola at a positive slope. Solution (1.6) with A = Al’ is 
a limit one for continuous flows in region 3 when AI > v/2. The condition of absence 
of shock for plane flows is of the form 

17A, I8 - 5R I2 + II2 < As < A, (1.9) 

R = 1/A: / 16 + Al (A, + 1) / 8 (Az>O) 

For A, < 0 (which corresponds to flows with supersonic zones locked at the axis) it is 
of the form 

- 5A1/ 4 - R-l\(A,<-5A,14+R-1 ( 1.10) 

For A, * 00 these conditions become V, < A, I AI < 1 and - 2 < Aa I AI < 
- 1/8 which were derived in [2, 33 for an inert gas, 

For v / (V -I- 8) < AI < v / 2 the limit solution for continuous flows in region 3 
is a broken line consisting of a segment of the straight line (1.6) with A = A I’ up to 
the second intersection with the parabola at point E,, and with the straight line (1.6) with 
A = Al”,where AI* is determined by (1.7) for E = .&,. This limit solution, unlike that 
for an inert gas, has three singular characterisitics (curve 4 in Fig. 4). 

The conditions of absence of shock are readily derived in this case. For plane flows 
they are of the form 

17A1 I8 - 5R I 2 + II, < As < Al ( 1. 11) 

(Az > 0) 

5A1/4- R - 1 < A2 < -65A1 I4 -I- 21R 14 - ‘14 (1.12) 

The conditions of absence of shock in the case of axisymmetric flows are similar. 
Results of calculations for v = 1 and A, = 1 , and A = 0.4 are shown in Figs, 3 
and 4, respectively. 

2, Flowr with rhock WIV~I, At the shock front specified implicitly by the 
equation cp (5, r) = 0, the following conditions must be satisfied: 

(&I - &I cpx / 2 - @,I - &s) cpt = 0, (2.1) 

(%I - %P) cPt - @,I - v,s) ‘Pr = 0 

where subscripts 1 and 2 relate the state ahead and behind the shock, respectively, Con- 
ditions (2.1) are exactly the same as at the shock front of a perfect gas [Z]. By the Cem- 
plen theorem VXI > uxa. Writing the equation of the shock front in the form x / fl = 

E, = const and allowing for (1.3) and (2. l), for v = 1 we obtain 

fi + fa = 8E.ts @f 1 GA + @f / m, + 2 (IO& + 1) = 0 (2.2) 
Solutions behind the shock are defined by the integral (1.6) in which A and &are ob- 
tained from (2.2). Let us write (2.2) in a more convenient form 

(2.3) fl + [(s), + 2 WE8 + I)] [($)1 + 2% + I] - 
[ (s)9 + 2’3, + 21 Es - %,a = 0 
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In numerical computations of the shock front position and of the flow behind it we 
seek zeros of function @ (5) which appears in the left-band part of (2.3) 

Fig. 3 

Fig. 5 

Fig. 4 

Fig. 6 

1 

Curves of Q, (6) corresponding to the integral curves appearing in Figs. 3 and 4 are 
shown in Figs, 5 and 6, respectively. Curve.s of @ (E) denoted by numerals 1, 2 and 3 
correspond to integral curves with the same- numerals in the v, E) -plane. A certain Ii- 
mit curve CD (g) exists in every case ; it vanishes at one point, and it is not possible to 
sat.@ conditions (2.3) for all curves lying below it. Such flows cannot be presented in 
their entirety in the self-similar form indicated here. 
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It is seen from Fig. 6 that conditions (2.3) can be satisfied not only along the integral 
curves that define flows with a limit line but*a~,al~g some curves for which continu- 
ous solutions exist. Furthermore, utrlike in the case of inert gasla shock front may be ge- 
nerated at coordinate & ( 0. Flows with the shock wave reaching the nozzle center 
do not evidently obtain under real conditions. They correspond to flows in nozzles with 
wall discontinuities. 

The author thanks 0, S. Ryzhov for formulating the problem and for valuable discus- 
sions in the course of this work. 
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It is shown that solutions of the first boundary value problem for second order 
linear parabolic equation with two independent variables reduce in region o 
with weak convergence of its coefficients in LB (0) to the solution of the first 
boundary value problem for some limit equation. This means that ~lution of 
the “microscopic” problem of heat propagation in one-dimensional disperse 
medium can be approximated by the solution of the “macroscopic” problem. 

The basic problem of the theory of disperse media consists of the determina- 
tion of macroscopic properties of these by the known properties of their consti- 
tuents and by the macroscopic parameters which depend on the disperse medi- 
um structure. A strict ~~e~ti~l f~rnu~ti~ of this problem in a general 
form has not been so far achieved (see surveys [l, 21). Statistical methods bad 
been applied to the investigation of properties of disperse media [3 - 5-J. Ano- 
ther approach consists in the analysis of equations with discontinuous coeffici- 
ents that define disperse media at a “microscopic” level with the view to appro- 
ximating solutions of such equations by functions which satisfy equations whcwe 
coefficients are in a certain sense limiting and possess better differential pro- 
perties than the coefficients of input equations (see [S - 8)). This problemhas 
not yet been analyxed in a general form. Supplementary restrictions were im- 
posed in the considered cases on the structure of coefficients of input equations, 
as for example, the condition of periodicity [9, 103 or of other kind [S, 111. 


